skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 10:00 PM ET on Friday, February 6 until 10:00 AM ET on Saturday, February 7 due to maintenance. We apologize for the inconvenience.


Search for: All records

Creators/Authors contains: "Candan, K. Selcuk"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract The built environment provides an excellent setting for interdisciplinary research on the dynamics of microbial communities. The system is simplified compared to many natural settings, and to some extent the entire environment can be manipulated, from architectural design to materials use, air flow, human traffic, and capacity to disrupt microbial communities through cleaning. Here, we provide an overview of the ecology of the microbiome in the built environment. We address niche space and refugia, population, and community (metagenomic) dynamics, spatial ecology within a building, including the major microbial transmission mechanisms, as well as evolution. We also address landscape ecology, connecting microbiomes between physically separated buildings. At each stage, we pay particular attention to the actual and potential interface between disciplines, such as ecology, epidemiology, materials science, and human social behavior. We end by identifying some opportunities for future interdisciplinary research on the microbiome of the built environment. 
    more » « less
  2. null (Ed.)
    Social media has become an indispensable tool in the face of natural disasters due to its broad appeal and ability to quickly disseminate information. For instance, Twitter is an important source for disaster responders to search for (1) topics that have been identified as being of particular interest over time, i.e., common topics such as “disaster rescue”; (2) new emerging themes of disaster-related discussions that are fast gathering in social media streams (Saha and Sindhwani 2012), i.e., distinct topics such as “the latest tsunami destruction”. To understand the status quo and allocate limited resources to most urgent areas, emergency managers need to quickly sift through relevant topics generated over time and investigate their commonness and distinctiveness. A major obstacle to the effective usage of social media, however, is its massive amount of noisy and undesired data. Hence, a naive method, such as set intersection/difference to find common/distinct topics, is often not practical. To address this challenge, this paper studies a new topic tracking problem that seeks to effectively identify the common and distinct topics with social streaming data. The problem is important as it presents a promising new way to efficiently search for accurate information during emergency response. This is achieved by an online Nonnegative Matrix Factorization (NMF) scheme that conducts a faster update of latent factors, and a joint NMF technique that seeks the balance between the reconstruction error of topic identification and the losses induced by discovering common and distinct topics. Extensive experimental results on real-world datasets collected during Hurricane Harvey and Florence reveal the effectiveness of our framework. 
    more » « less